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The AI Pandemic
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Privacy Challenge of AI
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Data-hungry AI 

Data 
Collection Data Privacy

Requirement on large-scale data collection 
contradicts privacy requirements



Federated Learning can help!
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Aggregation Server

Local Model

Local Dataset

Local Model

Local Dataset

Local Model

Local Dataset

Federated Learning Training
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Promised Benefits of Federated Learning

User Privacy Performance
Boosting

Hardware Efficiency

[Fereidooni et. al NDSS 2022][Kairouz et. al arXiv 2019][McMahan et. al PMLR 2017]



Applications of 
Federated Learning



Examples of Federated Learning Applications

Word Suggestion
Train word suggestion

[Hard et. al arXiv 2018]

Autonomous Driving
Improve object recognition 

[Jallepalli et. al IEEE  BigDataService 2021]

Medical Assistance
Collaboratively learn Brain 

Tumor Segmentation 

-------------------------------------------------
1 https://newsroom.intel.com/news/intel-works-university-pennsylvania-using-privacy-preserving-ai-identify-brain-tumors

[Intel & Pennsylvania1]

https://newsroom.intel.com/news/intel-works-university-pennsylvania-using-privacy-preserving-ai-identify-brain-tumors


Examples of Federated Learning Applications

IoT Anomaly Detection System
Improve detecting of compromised 

IoT devices 

[Nguyen et. al ICDCS 2019]

Device
Gateway

Device
Gateway

Our work: 
Sharing Cyber-Risk Intelligence

Improve risk detection & management 

[Fereidooni et. al NDSS 2022]

Jailbreak
Code Injection

Malicious App
Emulator

Code Injection
Emulator



Sharing Cyber-Risk 
Intelligence

FedCRI: Federated Mobile Cyber-Risk Intelligence

Hossein Fereidooni1, Alexandra Dmitrienko2, Phillip Rieger1, Markus Miettinen1, 
Ahmad-Reza Sadeghi1, and Felix Madlener3

1TU Darmstadt, 2Uni Wuerzburg, 3KOBIL GmbH

Network and Distributed Security Symposium (NDSS), 2022



Rapid Growth of Mobile Services

11



Rapid Growth of Mobile Services
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OUT OF

REACH

Problem Statement

13

Share Info 
about risks



Mobile Service

Risk 
Monitoring

Service-specific
Communication 

Channel

Risk Management
Secure Channel

Service Provider

End         User

Mobile
Service

Risk 
Management

Protected App

State-of-the-art: Risk Analysis Frameworks
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OS-level  Risks
(Jailbreak/Rooted)

(Code Injection)

Application-level risks
(app permissions)

Environmental risks
(Emulator/VM)

Risk Categories



Federated Risk Model

Cyber-Risk Intelligence Sharing Platform

Local 
Dataset

Local Risk 
Model

Payment Provider

Local 
Dataset

Local Risk 
Model

Online Banking Provider

OS-level 
Risks

Application-
level risks

Environmental 
risks

OS-level 
Risks

Application-
level risks

Environmental 
risks
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Federated Cyber-Risk Intelligence (FedCRI) Platform



Federated Risk Model

Cyber-Risk Intelligence Sharing Platform

Local Risk 
Model

Payment Provider

Local Risk 
Model

Online Banking Provider

Federated Risk 
Model

Online Shop

Federated Risk 
Model

Federated Risk 
Model
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Federated Cyber-Risk Intelligence (FedCRI) Platform



• Total dataset of 23.8 Mio users
• Collected in multiple countries in the EU over the course 

of six years
• 9 service providers operating in different sectors such as 

financial services, payments, insurance

Real-world user databases:

Dataset
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Service Providers

A B C D G H I K L

Android 134K 1.4M 450K 1.2M 9.3M 1.4M 2K 1.3M 135K

iOS 100K 1.6M 650K 743K 3.3M 910K 2K 1.1M 95K

Total 234K 3M 1.1M 1.94M 12.6M 2.3M 4K 2.4M 230K

Dataset Overview: Number of End Users by Service Provider
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Are Federated Learning Systems 
Resilient against Adversaries?
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[1] McMahan et al. "Communication-efficient learning of deep networks from decentralized data.”,  PMLR, 2017.

Federated Learning: Large Body of Literature
Source: Google Scholar

Over 8900 research papers on
FL Security or Privacy



Local Model

Local Dataset

Local Model

Local Dataset

Local Model

Local Dataset

Security and Privacy Risks in Federated Learning

Aggregation Server

Data Poisoning

21



Local Model

Local Dataset

Local Model

Local Dataset

Local Model

Local Dataset

Security and Privacy Risks in Federated Learning

Aggregation Server

Data Poisoning
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Model Poisoning



Local Model

Local Dataset

Local Model

Local Dataset

Local Model

Local Dataset

Security and Privacy Risks in Federated Learning

Aggregation Server

Data Poisoning
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Global Model Poisoning

Model Poisoning



Local Model

Local Dataset

Local Model

Local Dataset

Local Model

Local Dataset

Security and Privacy Risks in Federated Learning

Aggregation Server

Data Poisoning
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Global Model Poisoning

Model Poisoning



Local Model

Local Dataset

Local Model

Local Dataset

Local Model

Local Dataset

Security and Privacy Risks in Federated Learning

Aggregation Server
Privacy Leakage

Data Poisoning
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Global Model Poisoning

Model Poisoning



Local Model

Local Dataset

Local Model

Local Dataset

Local Model

Local Dataset

Security and Privacy Risks in Federated Learning

Aggregation Server
Privacy Leakage

Data Poisoning
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Global Model Poisoning

Model Poisoning



The Grand Challenge: Poisoning Attacks in FL
▪ Adversaries can control one (or more) local clients and 

manipulate (poison) data and/or training process

Local Model

Local
Dataset

Aggregation Server

Local Model

Local
Dataset

Local Model

Local
Dataset



The Grand Challenge: Poisoning Attacks in FL
▪ Adversaries can control one (or more) local clients and 

manipulate (poison) data and/or training process

▪ Backdoors in local models can make it to global, too

Local Model

Local
Dataset

Aggregation Server

Local Model

Local
Dataset
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The Grand Challenge: Poisoning Attacks in FL
▪ Adversaries can control one (or more) local clients and 

manipulate (poison) data and/or training process

▪ Backdoors in local models can make it to global, too

Untargeted Attacks 

▪ Aim at reducing classification accuracy

Targeted Attacks

▪ Aim to cause misclassification of inputs with triggers only

Local Model

Local
Dataset

Aggregation Server

Local Model

Local
Dataset

Local Model

Local
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The Grand Challenge: Poisoning Attacks in FL
▪ Adversaries can control one (or more) local clients and 

manipulate (poison) data and/or training process

▪ Backdoors in local models can make it to global, too

Untargeted Attacks 

▪ Aim at reducing classification accuracy

Targeted Attacks

▪ Aim to cause misclassification of inputs with triggers only

Local Model

Local
Dataset

Aggregation Server

Local Model

Local
Dataset

Local Model

Local
Dataset



Defense Approaches

31

• Differential Privacy 
approaches, e.g., 
noising and clipping or 
gradient pruning

• Conducted on local 
models or aggregated 
global model

• Replace the standard 
aggregation algorithm

• E.g., select only one 
local contribution to be 
part of the new global 
model [3,4]

• Detection based on one 
or a few metrics

• Filtering leverages 
clustering methods

• Conducted on local 
models or updates (to 
the global model)

[1] E. Bagdasaryan et al., How To Backdoor Federated Learning. AISTATS, 2020
[2] Naseri et al., Local and Central Differential Privacy for Robustness and Privacy in Federated Learning, NDSS 2022
[3] Blanchard, et al, Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NIPS, 2017
[4] Yin, et al, Byzantine-robust distributed learning: Towards optimal statistical rate. PMLR, 2018
[5] Fung et al., The limitations of federated learning in Sybil settings. In RAID, 2020 
[6] Awan et al. CONTRA: Defending against Poisoning Attacks in Federated Learning. ESORICS, 2021

Reduce classification accuracy of the main task Main classification accuracy 
is preserved

Information 
Reduction, e.g.[1,2]

Robust Aggregation 
e.g. [3,4]

Detection & 
Filtering, e.g. [5,6] 



Challenges of Filtering-based Defense Approaches

32

Non-IID Data
(non-independent and 
identically distributed)

1

Detection of Multiple 
Backdoors

2

Adaptive Attacker

3



The Challenge of Non-IID Data

Prediction classes on one client
(10 classes)
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Example of non-IID data Easy

Very hard

…

Inter-client non-iid – arbitrary distribution across and within clients

2-class non-IID with disjoint labels (similar distribution across clients)

Arbitrary distribution of labels on clients (but similar across clients)

Classical non-IID: 1 class has more labels

Considered already very challenging

Was not considered in related work



Visualisation of Model Updates

• Let’s imagine that the model is a simple linear function f(x) = ax+b, where  a and b 
are model parameters 

x

f(x)

Global model from training round t-1
Benign local models at round t
Malicious models at round t

• Malicious models differ from the global
model due to the adversary’s manipulation

• Benign models differ due non-independent 
and identically distributed (non-IID) data

34



Challenges of Correct Clustering

35

Global model from training round t-1
Benign models at round t
Malicious models at round t

Benign

Backdoored Backdoored Benign?!

Backdoored

One backdoor & IID data Multiple backdoors?

Multiple backdoors &
non-IID data?

One backdoor & non-IID data?

Benign or malicious?



Changing Loss 
Function Adding an additional adaptation loss to constrain weights

Losstrain = Lossbenign + Lossadv

Changing PMR

Adapt number of malicious clients that inject the backdoor

Changing PDR
Adapt number of samples for backdoor behavior in training 
data 

PDR: Poison Data Rate

Adaptive Attackers

Changing Behaviour

Behave benign or malicious in different training rounds

PMR: Poison Model Rate

𝐿𝑜𝑠𝑠 = 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 1 − 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

36



Adaption by Means of Changing Loss Function

State-of-the-Art Approach
▪ Constrain-and-Scale method from Bagdasaryan et. al [1]

− ONE loss for the task in the dataset    𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 and …

− ONE loss for the adaption 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛, 

− both weighted by ONE scaling parameter 𝛼

− 𝛼 parameter introduces adversarial dilemma 
between backdoor effectiveness and stealthiness

Challenges for Attackers
▪ Find suitable α (typically done manually)

▪ One can encounter ill-conditioning: 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 and 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛 are at different scales →

this will lead to a situation where only one loss is effectively optimized

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛+ 1 − 𝛼𝛼

[1] E. Bagdasaryan et al., How To Backdoor Federated Learning. AISTATS, 2020



Addressing Challenges of Filtering-based Defenses

MESAS

[with Krauss. 
ACM CCS 2023]

FreqFed

[with Fereidooni 
et al., NDSS 2024]

CrowdGuard

[with Rieger 
at al., 

NDSS 2024]
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Philip Rieger*1, Torsten Krauß*2, Markus Miettinen1, Alexandra Dmitrienko2, 
Ahmad-Reza Sadeghi 1

* Equally contributing authors

1TU Darmstadt, 2Uni Wuerzburg

Network and Distributed System Security Symposium (NDSS), 2024

Federated Backdoor Detection in Federated Learning

CrowdGuard



CrowdGuard: Federated Backdoor Detection
• Assumption: > 50% of clients are benign

• Requirement: Analysis/aggregation of local models is performed within Trusted Execution Environment (TEE)

1. Server distributes all local 
models to clients

2. Clients use local data for 
validation of local models of 
other clients

3. Report results to Server
4. Server applies clustering and 

filters malicious models

[yes, yes, no] [no, no, yes]

Global model

Aggregate

[yes,yes, no]

TEE TEETEE

41



Analyzing Deep Layer Client Predictions

Global model

Distance 
Function

DNN Layer 
outputs

▪ Repeat for every sample of every label and average results within the label

Model Inference

Local model of 
another client

Example: 
Cosine& Euclidian

distance

x

f(x)

42



Output of Deep Layer Client Predictions 
• Distance of benign and backdoored models to the global model must differ in at least some layer outputs

• >50% of clients are benign→Median must also be benign→We can identify which cluster is benign



Reducing Dimensionality using Principal  Component Analysis (PCA)

Setup: 10 clients (11 benign & 9 malicious) – Analysis on client 0
Values: Principal component 1 values
Metric: Cosine and Euclidian distance of the prediction to the prediction of the Global Model

Benign contributions 
identified by median

Malicious contributions

Benign models are circles, malicious models are triangles. Colors depict main labels.



Detection and Pruning Malicious Models

2nd Pruning

New PCA

Significant
different

Majority

Insignificant
=

All benign

Malicious

Bengin

Plain Cosine Distance
of hidden layer 

predictions

• PCA – Principle Component Analysis

Statistical Tests
- T-Test for equal mean
- F-Test for equal variance
- D-Test for equal distribution
- 3𝜎 rule for outlier detection

45



Results and Findings
Metrics:

▪ Cosine and Euclidian distance of local model to global model layer outputs

▪ PCA is effective for dimensionality reduction

▪ We additionally derive so-called HLBIM metric which helps to separate benign and 
malicious models more effectively

Effectiveness and Advantages:

▪ 100% True Positive Rate (TPR) and True Negative Rate (TNR) across various 
scenarios, including IID and non-IID data distribution (scenarios 1-3)

▪ Per design resilient against adaptive attackers 

→ CrowdGuard is being integrated into OpenFL 1.6 

Special Considerations:

▪ Requires usage of Trusted Execution Environments (TEEs)

▪ Our next works do not require any TEEs on clients! 46



Our Filtering-based Defenses that Address Challenges
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FreqFed: A Frequency Analysis-Based Backdoor Detection in FL

Frequency Analysis
of local model updates

Problems of previous defenses:

▪ Client-based detection methods require protections against privacy 
attacks (e.g., TEE-based execution)

▪ Server-side defenses are weak against adaptive attackers

▪ Non-IID data, especially disjoint labels (scenario 3), are difficult to 
address (source of false positives)

Idea:
▪ Transform model weights to frequency domain and perform 

frequency analysis

Goals:

• Support scenarios 1-3 of non-IIDness

• Prevent attackers from adapting to the defense

• Avoid reliance on TEEs



Intuition

During training, DNNs prioritize low frequencies, transitioning from low to high
frequencies when approximating target functions [1].

Most energy in model weights is in low-frequency DCT* components [2].

Two Observations:

We inspire and emphasize the low-frequency DCT spectrum because it reveals weight
energy distribution across frequencies.

1

Backdoors typically cause an energy shift in the low-frequency components of the DCT.
The energy shift, while subtle in the time domain, becomes more noticeable in the
frequency domain.

2

[1] Xu et al., Learning in the frequency domain. In Conference on Computer Vision and Pattern Recognition. IEEE/CVF, 2020.
[2] Xu et al., Training behavior of deep neural network in frequency domain. In International Conference on Neural Information Processing. Springer, 2019

An adaptive attacker operates in time domain and cannot adapt easily in frequency 

domain
3

*DCT Discrete Cosine Transform



FreqFed Approach
• Assumption: > 50% of clients are benign
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Results and Findings

Metrics:
▪ low-frequency components of the DCT 

Effectiveness 

▪ 100% True Positive Rate (TPR) and True Negative Rate 
(TNR) across various scenarios, including IID and non-IID 
data distribution (scenarios 1-3)

Advantages:
▪ Resilient against adaptive attackers (empirically shown)

▪ No reliance on TEEs

52



Our Filtering-based Defenses that Address Challenges

MESAS

[with Krauss. 
ACM CCS 2023]

FreqFed

[with Fereidooni 
et al., NDSS 2024]

CrowdGuard

[with Rieger 
at al., 

NDSS 2024]



MESAS

Torsten Krauss and Alexandra Dmitrienko

Uni Wuerzburg

ACM Conference on Computer and Communications Security (CCS), 2023

Poisoning Defense for Federated Learning Resilient 
against Adaptive Attackers



MESAS: Metric – Cascades for Poisoning Detection

Goals:
▪ Support arbitrary non-IID client datasets  

(including scenario 4)

▪ Prevent attackers from adapting to the defense 
without relying on TEEs

Idea:
▪ Use many metrics for detection of poisoned 

models at the same time

▪ Intuition: For an adaptive attacker, it should be 
harder (if at all possible?) to adapt to many 
metrics

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Classical Adaptive Adversary

…

The most challenging non-IID scenario: 
Arbitrary distribution between and across clients

Client 1 Client 2 Client n

…

55



MESAS Approach

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Approach:
▪ Detection and pruning based on six well-

chosen metrics

▪ Force the attacker into a heavy multi-objective 
optimization problem

− Hardening the adversarial dilemma between 
backdoor effectiveness and stealthiness

Global 
Model

Local 
Models

Feature 
Extractor

COUNTCOS EUCL

VAR MAX MIN
Metrics

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary
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MESAS Approach  - Metrics

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

COS & EUCL:
▪ Cosine & Euclidean distance 

between Global and Local Models

COUNT:
▪ Reason: Same COS (𝛽) for different 

models possible

▪ COUNT counts a number of 
parameters that are increased

Global 
Model

Local 
Models

Feature 
Extractor

COUNTCOS EUCL

VAR MAX MIN
Metrics

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary

𝛽
𝛽

𝐺𝑟

Benign
Model

Pa
ra

m
et

er
 𝑝
2

Parameter 𝑝1

Malicious
Model
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Malicious VAR level
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COS EUCL

MESAS Approach  - Metrics

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

VAR:
▪ COS, EUCL, and COUNT can look benign, 

but still a backdoor can be embedded

▪ Adversary could increase the variance of 
updates

Global 
Model

Local 
Models

Feature 
Extractor

COUNT

VAR MAX MIN
Metrics

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary

VAR

Parameters

Benign VAR level
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Parameters
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VAR

COS EUCL

MESAS Approach  - Metrics

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

MIN & MAX:
▪ Variances in general are not heavily 

influenced by extreme outliers

▪ An adversary could embed a 
backdoor into outliers

Global 
Model

Local 
Models

Feature 
Extractor

COUNT

MAX MIN
Metrics

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
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VAR
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Malicious VAR level
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Parameters Parameters
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MESAS Approach

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Approach – Step 1:

▪ Extract six metrics

Approach – Step2:

▪ Iterative pruning loop 
leveraging statistical tests and 
clustering to detect poisoned 
models

Global 
Model

Local 
Models

Feature 
Extractor

COUNTCOS EUCL

VAR MAX MIN
Metrics

Statistical 
Tests

- T-Test
- F-Test

- 3𝜎 rule

Clustering

PruningSignificant?

Filtered 
Models

Clean Global 
Model

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary
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MESAS Results

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Evaluation:
▪ Metrics have mutual effects during 

adaptation

▪ We demonstrate empirically that an 
attacker cannot adapt to all of them 
at the same time

▪ It works even for the most 
challenging non-IID scenario with 
arbitrary distribution across clients!

Global 
Model

Local 
Models

Feature 
Extractor

COUNTCOS EUCL

VAR MAX MIN
Metrics

Statistical 
Tests

- T-Test
- F-Test

- 3𝜎 rule

Clustering

PruningSignificant?

Filtered 
Models

Clean Global 
Model

𝐿𝑜𝑠𝑠𝐶𝑂𝑆 + 𝐿𝑜𝑠𝑠𝐸𝑈𝐶𝐿 + …+ 𝐿𝑜𝑠𝑠𝑀𝐼𝑁

Adaptive 
Adversary
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CrowdGuard vs. FreqFed vs. MESAS

CrowdGuard FreqFed MESAS

What is analyzed? Prediction layer outputs Local model updates Local models

Where the analysis is 
performed?

Clients Server Server

Utilized metrics
Cosine & Euclidian 

distances between global 
and local models

Low frequency 
components in frequency 

spectrum

Six metrics: Cosine & 
Euclidian distances, 
COUNT, Variance, 

Outliers (MIN & MAX)

Resilience against adaptive 
attacker

Resilient per design Demonstrated empirically Demonstrated empirically

Non-IIDness Scenarios 1-3 Scenarios 1-3 Scenarios 1-4

Additional requirements TEE on clients - -



More on Adaptive Attacks and Related Challenges
▪ Constrain-and-Scale method from 

Bagdasaryan et. al [1] requires manual fine-tuning

− Can be already challenging with one 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛
− If an attacker wants  to bypass several detection metrics,  

they need to consider more complex 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛 consisting of several components

Wish-list of the Attacker
▪ Adaption to multiple losses simultaneously

▪ Individual weights for all adaption losses

▪ No manual configuration of  𝜇𝑗 or 𝛼 while getting a good adaption

→ Can the process of adaption be automated? 

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛+ 1 − 𝛼𝛼



𝑗=1

𝑚

𝐿𝑜𝑠𝑠𝑗𝜇𝑗

[1] E. Bagdasaryan et al., How To Backdoor Federated Learning. AISTATS, 2020
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AutoAdapt

Torsten Krauss, Jan König, Alexandra Dmitrienko, and Christian Kanzow

Network and Distributed Systems Security Symposium (NDSS), 2024

Automatic Adversarial Adaption for Stealthy Poisoning 
Attacks in Federated Learning



Valid Value Range

Visualization of Poisoned Models and Detection Metrics

Constrained Poisoned Models

M
et

ri
c

V
al

u
e

s

Models

Benign Models

Unconstrained Poisoned Models

Adapt

Parameter 1

P
ar

am
et

er
 2

Exemplary visualization of a model with 2 parametersExample with one detection metric value

Benign Models

Unconstrained Poisoned Models

Valid Value Range

New Global Model
New Poisoned Global Model

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

65



AutoAdapt: Automatic Adversarial Adaption

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

M
et

ri
c

V
al

u
e

s

Models
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Solution

▪ Replace α with Augmented Lagrangian (AL)*

Method

▪ Extend AL for multiple range constraints

(if we want to detect in several metrics)

▪ No manual hyperparameters

→ 𝛼𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡 is insensitive

▪ Automatic switching off of the 𝐿𝑜𝑠𝑠𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡 for 

constraints that are already fulfilled

AutoAdapt: Automatic Adversarial Adaption

𝐿𝑜𝑠𝑠 = 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 1 − 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

Trade-Off

Range

M
et

ri
c

V
al

u
e

s

Models
𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝑎𝑑𝑎𝑝𝑡𝑖𝑜𝑛

AutoAdapt

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡

𝜇𝑗 = ൝
𝜇𝑗 + 𝛼𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡 𝐿𝑜𝑠𝑠𝑗 , 𝑖𝑓𝐿𝑜𝑠𝑠𝑗 ≥ 0

0, 𝑖𝑓𝐿𝑜𝑠𝑠𝑗 < 0
67

𝐿𝑜𝑠𝑠𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡 =
1

2𝛼𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡
σ𝑗=1
𝑚 ( max 0, 𝜇𝑗 + 𝛼𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡 𝐿𝑜𝑠𝑠𝑗

2
− 𝜇𝑗

2)

*Augmented Lagrangian methods are a certain class of algorithms for solving 

constrained optimization problems



Metric
Extractor

AutoAdapt: Automatic Adversarial Adaption
Range

M
et

ri
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V
al
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s

Models
𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡

Benign
Training

FL Clients Aggregation
Server

Benign
Models

Unconstrained

Poisoned Training

Suspicious
Models

Constrained

Unsuspicious
Models

Benign
Training

Benign
Models

Valid Range
Inequality Constraints

𝐶𝑂𝑆𝑚𝑖𝑛 ≤ 𝐶𝑂𝑆∗ ≤ 𝐶𝑂𝑆𝑚𝑎𝑥

Defense
Metrics

1
2 3

4

5

6

Workflow

68



Results

▪ Successfull adaption to multiple range constraints simultaneously

▪ Adaption on a model-wise and layer-wise level

▪ Showcased circumvention of five state-of-the-art defenses

▪ Quick adaption (mostly within 1-3 training epochs)

→We propose to use AutoAdapt as a new baseline for evaluation of new FL poisoning

defenses

AutoAdapt: Automatic Adversarial Adaption
Range

M
et

ri
c

V
al

u
e

s

Models
𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 + 𝐿𝑜𝑠𝑠𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡
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Conclusion

70

➢ Similar to centralized ML, FL is also prone to 
untargeted and targeted poisoning attacks

➢ Federated Learning helps solving high data 
demand vs. privacy dilemma

➢ An arm raise between attacks and defenses is 
going on and will continue



https://www.evilaicartoons.com/archive
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