

From Advantages to Adversaries: Safeguarding Security in Federated Machine Learning

Alexandra Dmitrienko, Julius Maximilians Universität Würzburg

The AI Pandemic

Privacy Challenge of AI

Requirement on large-scale data collection contradicts privacy requirements

Data Collection Data Privacy

Federated Learning can help!

Federated Learning Training

Promised Benefits of Federated Learning

Applications of Federated Learning

n

Examples of Federated Learning Applications

¹ <https://newsroom.intel.com/news/intel-works-university-pennsylvania-using-privacy-preserving-ai-identify-brain-tumors>

Examples of Federated Learning Applications

Sharing Cyber-Risk Intelligence

FedCRI: Federated Mobile Cyber-Risk Intelligence

Hossein Fereidooni¹, Alexandra Dmitrienko², Phillip Rieger¹, Markus Miettinen¹, Ahmad-Reza Sadeghi¹, and Felix Madlener³

¹TU Darmstadt, ²Uni Wuerzburg, ³KOBIL GmbH

Network and Distributed Security Symposium (NDSS), 2022

Rapid Growth of Mobile Services

Rapid Growth of Mobile Services

Problem Statement

State-of-the-art: Risk Analysis Frameworks

Risk Categories

OS-level Risks (Jailbreak/Rooted) (Code Injection)

Application-level risks (app permissions)

Environmental risks (Emulator/VM)

Federated Cyber-Risk Intelligence (FedCRI) Platform

Federated Cyber-Risk Intelligence (FedCRI) Platform

Dataset

Real-world user databases:

- Total dataset of **23.8 Mio users**
- Collected in multiple countries in the **EU** over the course of **six years**
- **9 service providers** operating in different sectors such as financial services, payments, insurance

Dataset Overview: Number of End Users by Service Provider

Results

Are Federated Learning Systems Resilient against Adversaries?

Federated Learning: Large Body of Literature

Source: Google Scholar

[1] McMahan et al. "Communication-efficient learning of deep networks from decentralized data.", PMLR, 2017.

■ Adversaries can control one (or more) local clients and manipulate (poison) data and/or training process

- Adversaries can control one (or more) local clients and manipulate (poison) data and/or training process
- Backdoors in local models can make it to global, too

- Adversaries can control one (or more) local clients and manipulate (poison) data and/or training process
- Backdoors in local models can make it to global, too

Untargeted Attacks

■ Aim at reducing classification accuracy

Targeted Attacks

■ Aim to cause misclassification of inputs with triggers only

- Adversaries can control one (or more) local clients and manipulate (poison) data and/or training process
- Backdoors in local models can make it to global, too

Untargeted Attacks

■ Aim at reducing classification accuracy

Targeted Attacks

■ Aim to cause misclassification of inputs with triggers only

Defense Approaches

Information Reduction, e.g.[1,2]

- Differential Privacy approaches, e.g., noising and clipping or gradient pruning
- Conducted on local models or aggregated global model

Robust Aggregation e.g. [3,4]

- Replace the standard aggregation algorithm
- E.g., select only one local contribution to be part of the new global model [3,4]

Detection & Filtering, e.g. [5,6]

- Detection based on one or a few metrics
- Filtering leverages clustering methods
- Conducted on local models or updates (to the global model)

Reduce classification accuracy of the main task \blacksquare Main classification accuracy

is preserved

[1] E. Bagdasaryan et al., How To Backdoor Federated Learning. AISTATS, 2020

- [2] Naseri et al., Local and Central Differential Privacy for Robustness and Privacy in Federated Learning, NDSS 2022
- [3] Blanchard, et al, Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. NIPS, 2017
- [4] Yin, et al, Byzantine-robust distributed learning: Towards optimal statistical rate. PMLR, 2018
- [5] Fung et al., The limitations of federated learning in Sybil settings. In RAID, 2020
- [6] Awan et al. CONTRA: Defending against Poisoning Attacks in Federated Learning. ESORICS, 2021

Challenges of Filtering-based Defense Approaches

2

1

Detection of Multiple **Backdoors**

Adaptive Attacker

3

The Challenge of Non-IID Data

(10 classes)

Visualisation of Model Updates

• Let's imagine that the model is a simple linear function $f(x) = ax + b$, where a and b are model parameters

- Malicious models differ from the global model due to the adversary's manipulation
- Benign models differ due non-independent and identically distributed (non-IID) data

Global model from training round t-1 Benign local models at round t Malicious models at round t

Challenges of Correct Clustering

Global model from training round t-1 Benign models at round t Malicious models at round t

Adaptive Attackers

Adaption by Means of Changing Loss Function

 \rightarrow Loss = α Loss_{data} + (1 - α) Loss_{adaption}

State-of-the-Art Approach

- **•** Constrain-and-Scale method from Bagdasaryan et. al [1]
	- ONE loss for the task in the dataset $Loss_{data}$ and ...
	- $-$ ONE loss for the adaption $Loss_{adaption}$,
	- $-$ both weighted by ONE scaling parameter α
	- α parameter introduces adversarial dilemma between backdoor effectiveness and stealthiness

Challenges for Attackers

- **Find suitable** α **(typically done manually)**
- One can encounter ill-conditioning: $Loss_{data}$ and $Loss_{adaption}$ are at different scales \rightarrow this will lead to a situation where only one loss is effectively optimized

Addressing Challenges of Filtering-based Defenses

Addressing Challenges of Filtering-based Defenses

CrowdGuard

Federated Backdoor Detection in Federated Learning

Philip Rieger*¹, Torsten Krauß^{*2}, Markus Miettinen¹, Alexandra Dmitrienko², Ahmad-Reza Sadeghi ¹

* Equally contributing authors

¹TU Darmstadt, ²Uni Wuerzburg

Network and Distributed System Security Symposium (NDSS), 2024

CrowdGuard: Federated Backdoor Detection

- Assumption: > 50% of clients are benign
- Requirement: Analysis/aggregation of local models is performed within Trusted Execution Environment (TEE)

Analyzing Deep Layer Client Predictions

■ Repeat for every sample of every label and average results within the label

Output of Deep Layer Client Predictions

- Distance of benign and backdoored models to the global model must differ in at least some layer outputs
- >50% of clients are benign \rightarrow Median must also be benign \rightarrow We can identify which cluster is benign

Reducing Dimensionality using Principal Component Analysis (PCA)

Setup: 10 clients (11 benign & 9 malicious) – Analysis on client 0

Values: Principal component 1 values

Metric: Cosine and Euclidian distance of the prediction to the prediction of the Global Model

Benign models are circles, malicious models are triangles. Colors depict main labels.

Detection and Pruning Malicious Models

• *PCA – Principle Component Analysis*

Results and Findings

Metrics:

- Cosine and Euclidian distance of local model to global model layer outputs
- PCA is effective for dimensionality reduction
- We additionally derive so-called HLBIM metric which helps to separate benign and malicious models more effectively

Effectiveness and Advantages:

- 100% True Positive Rate (TPR) and True Negative Rate (TNR) across various scenarios, including IID and non-IID data distribution (scenarios 1-3)
- Per design resilient against adaptive attackers
- \rightarrow CrowdGuard is being integrated into OpenFL 1.6

Special Considerations:

- Requires usage of Trusted Execution Environments (TEEs)
- Our next works do not require any TEEs on clients! A 26 and 2012 146 and 2012 146 and 2012 146 and 2012 146

Our Filtering-based Defenses that Address Challenges

FreqFed

A Frequency Analysis-Based Approach for Mitigating Poisoning Attacks in Federated Learning

Hossein Fereidooni¹, Alessandro Pegoraro¹, Phillip Rieger¹, Alexandra Dmitrienko², Ahmad-Reza Sadeghi¹

¹TU Darmstadt, ²Uni Wuerzburg

Network and Distributed System Security Symposium (NDSS), 2024

FreqFed: A Frequency Analysis-Based Backdoor Detection in FL

Problems of previous defenses:

- Client-based detection methods require protections against privacy attacks (e.g., TEE-based execution)
- Server-side defenses are weak against adaptive attackers
- Non-IID data, especially disjoint labels (scenario 3), are difficult to address (source of false positives)

Idea:

• Transform model weights to frequency domain and perform frequency analysis

Goals:

- Support scenarios 1-3 of non-IIDness
- Prevent attackers from adapting to the defense
- Avoid reliance on TEEs

Intuition

Two Observations:

During training, DNNs prioritize low frequencies, transitioning from low to high frequencies when approximating target functions [1].

Most energy in model weights is in low-frequency DCT* components [2].

We inspire and emphasize the low-frequency DCT spectrum because it reveals weight energy distribution across frequencies.

Backdoors typically cause an energy shift in the low-frequency components of the DCT. The energy shift, while subtle in the time domain, becomes more noticeable in the frequency domain.

An adaptive attacker operates in time domain and cannot adapt easily in frequency domain

*DCT Discrete Cosine Transform

[1] Xu et al., Learning in the frequency domain. In Conference on Computer Vision and Pattern Recognition. IEEE/CVF, 2020. [2] Xu et al., Training behavior of deep neural network in frequency domain. In International Conference on Neural Information Processing. Springer, 2019

FreqFed Approach

• Assumption: > 50% of clients are benign

Results and Findings

Metrics:

■ low-frequency components of the DCT

Effectiveness

■ 100% True Positive Rate (TPR) and True Negative Rate (TNR) across various scenarios, including IID and non-IID data distribution (scenarios 1-3)

Advantages:

- Resilient against adaptive attackers (empirically shown)
- No reliance on TEEs

Our Filtering-based Defenses that Address Challenges

MESAS

Poisoning Defense for Federated Learning Resilient against Adaptive Attackers

Torsten Krauss and Alexandra Dmitrienko

Uni Wuerzburg

ACM Conference on Computer and Communications Security (CCS), 2023

MESAS: Metric – Cascades for Poisoning Detection

Goals:

- Support arbitrary non-IID client datasets (including scenario 4)
- Prevent attackers from adapting to the defense without relying on TEEs

Idea:

- Use many metrics for detection of poisoned models at the same time
- Intuition: For an adaptive attacker, it should be harder (if at all possible?) to adapt to many metrics

MESAS Approach

Approach:

- Detection and pruning based on **six** wellchosen metrics
- **EXECO** Force the attacker into a heavy multi-objective optimization problem
	- − Hardening the adversarial dilemma between backdoor effectiveness and stealthiness

MESAS Approach - Metrics

COS & EUCL:

■ Cosine & Euclidean distance between Global and Local Models

COUNT:

- **EXECUTE:** Reason: Same COS (β) for different models possible
- COUNT counts a number of parameters that are increased

MESAS Approach - Metrics

VAR:

- COS, EUCL, and COUNT can look benign, but still a backdoor can be embedded
- Adversary could increase the variance of updates

MESAS Approach - Metrics

MIN & MAX:

- Variances in general are not heavily influenced by extreme outliers
- An adversary could embed a backdoor into outliers

MESAS Approach

Approach – Step 1:

Extract six metrics

Approach – Step2:

E Iterative pruning loop leveraging statistical tests and clustering to detect poisoned models

MESAS Results

Evaluation:

- Metrics have mutual effects during adaptation
- We demonstrate empirically that an attacker cannot adapt to all of them at the same time
- It works even for the most challenging non-IID scenario with arbitrary distribution across clients!

CrowdGuard vs. FreqFed vs. MESAS

More on Adaptive Attacks and Related Challenges

- Constrain-and-Scale method from Bagdasaryan et. al [1] requires manual fine-tuning \longrightarrow Loss = α Loss_{data} + $(1 - \alpha)$ Loss_{adaption}
	- Can be already challenging with one $Loss_{adaption}$
	- If an attacker wants to bypass several detection metrics, they need to consider more complex $Loss_{adaption}$ consisting of several components

Wish-list of the Attacker

- Adaption to multiple losses simultaneously
- Individual weights for all adaption losses
- **E** No manual configuration of μ_i or α while getting a good adaption

\rightarrow Can the process of adaption be automated?

 μ_j Loss $_j$

 $\sum_{i=1}^{n}$

AutoAdapt

Automatic Adversarial Adaption for Stealthy Poisoning Attacks in Federated Learning

Torsten Krauss, Jan König, Alexandra Dmitrienko, and Christian Kanzow

Network and Distributed Systems Security Symposium (NDSS), 2024

Visualization of Poisoned Models and Detection Metrics

Example with one detection metric value Exemplary visualization of a model with 2 parameters

AutoAdapt: Automatic Adversarial Adaption

AutoAdapt: Automatic Adversarial Adaption

 $Loss = Loss_{data} + Loss_{AutoAdapter}$

$$
Loss_{AutoAdapt} = \frac{1}{2\alpha_{AutoAdapt}} \sum_{j=1}^{m} (|max(0, \mu_j + \alpha_{AutoAdapt} Loss_j)|^2 - \mu_j^2)
$$

$$
\mu_j = \begin{cases} \mu_j + \alpha_{AutoAdapt} \text{ Loss}_j, & \text{if } \text{Loss}_j \ge 0 \\ 0, & \text{if } \text{Loss}_j < 0 \end{cases}
$$

Range Metric Values

Solution

- Replace α with Augmented Lagrangian (AL)* Method
- Extend AL for multiple range constraints (if we want to detect in several metrics)
- No manual hyperparameters
	- $\rightarrow \alpha_{Aut\odot Adapt}$ is insensitive
- **EXECUTE:** Automatic switching off of the $Loss_{AutoAdapt}$ for constraints that are already fulfilled

⁶⁷ ***Augmented Lagrangian methods** are a certain class of algorithms for solving constrained optimization problems

Range

Metric Values

AutoAdapt: Automatic Adversarial Adaption

 $Loss = Loss_{data} + Loss_{AutoAdapter}$

- Successfull adaption to multiple range constraints simultaneously
- Adaption on a model-wise and layer-wise level
- Showcased circumvention of five state-of-the-art defenses
- Quick adaption (mostly within 1-3 training epochs)

→ We propose to use AutoAdapt as a new baseline for evaluation of new FL poisoning defenses

Conclusion

 \triangleright Federated Learning helps solving high data demand vs. privacy dilemma

➢ Similar to centralized ML, FL is also prone to untargeted and targeted **poisoning attacks**

➢ An arm raise between attacks and defenses is going on and will continue

"If we let it out, there's an 85% chance it would cure cancer. But there's also a 0.01% chance it takes over the world!"

https://www.evilaicartoons.com/archive